Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.575
Filtrar
1.
Shanghai Kou Qiang Yi Xue ; 33(1): 85-89, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583031

RESUMO

PURPOSE: To study the relationship between the expression of prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) and the osteogenic activity and oxygen level of alveolar bone. METHODS: The alveolar bones of 56 patients with chronic periodontitis who received dental treatment from March 2021 to March 2023 were collected as the experimental (periodontitis) group, and the healthy alveolar bones of 53 patients who received dental treatment during the same period were selected as the control group. The osteoblasts were cultured by tissue block culture, and modified Kaplow's alkaline phosphatase (ALP) staining was used to identify the cells. COX-2, PGE2 and osteoclastogenesis inhibitory factor (OPG) receptor activator of nuclear factor-κb ligand (RANKL) and other indicators were determined by ELISA. PGE2, COX-2, OPG, internal oxygen level, ALP, RANKL and their correlation were compared between the two groups. Statistical analysis was performed with SPSS 27.0 software package. RESULTS: PGE2, COX-2 and RANKL in periodontitis group were significantly higher than those in the control group, but OPG, internal oxygen level and ALP were significantly lower than those in the control group (P<0.05). PGE2 and COX2 were highly positively correlated with OPG, internal oxygen level and ALP, but were highly positively correlated with RANKL(P<0.05). CONCLUSIONS: The expression of PGE2 and COX-2 is highly negatively correlated with ALP and oxygen levels. Clinical treatment may consider increasing oxygen levels, increasing oxygen partial pressure, and regulating ALP levels by drugs, so as to change the inflammatory condition of periodontitis or other dental diseases.


Assuntos
Dinoprostona , Periodontite , Humanos , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Osteoblastos/metabolismo , Osteogênese , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo
2.
Sheng Li Xue Bao ; 76(2): 329-340, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658381

RESUMO

Chronic liver disease (CLD) is a major global health burden in terms of growing morbidity and mortality. Although many conditions can cause CLD, leading to cirrhosis and hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common culprits. Prostaglandin E2 (PGE2), produced in the liver, is an important lipid mediator derived from the ω-6 polyunsaturated fatty acid, arachidonic acid, and plays a critical role in hepatic homeostasis. The physiological effects of PGE2 are mediated through four classes of E-type prostaglandin (EP) receptors, namely EP1, EP2, EP3 and EP4. In recent years, an increasing number of studies has been done to clarify the effects of PGE2 and EP receptors in regulating liver function and the pathogenesis of CLD to create a new potential clinical impact. In this review, we overview the biosynthesis and regulation of PGE2 and discuss the role of its synthesizing enzymes and receptors in the maintenance of normal liver function and the development and progress of CLD. We also discuss the potential of the PGE2-EP receptors system in treating CLD with various etiologies.


Assuntos
Dinoprostona , Hepatopatias , Receptores de Prostaglandina E , Humanos , Dinoprostona/metabolismo , Receptores de Prostaglandina E/metabolismo , Receptores de Prostaglandina E/fisiologia , Hepatopatias/metabolismo , Doença Crônica , Animais , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
3.
Int Ophthalmol ; 44(1): 158, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530532

RESUMO

PURPOSE: Rhegmatogenous retinal detachment is a severe vision-threatening complication that can result into proliferative vitreoretinopathy (PVR) and re-detachment of the retina if recovery from surgery fails. Inflammation and changes in retinal pigment epithelial (RPE) cells are important contributors to the disease. Here, we studied the effects of simvastatin and amfenac on ARPE-19 cells under inflammatory conditions. METHODS: ARPE-19 cells were pre-treated with simvastatin and/or amfenac for 24 h after which interleukin (IL)-1α or IL-1ß was added for another 24 h. After treatments, lactate dehydrogenase release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) processing, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity, prostaglandin E2 (PGE2) level, and extracellular levels of IL-6, IL-8, monocytic chemoattractant protein (MCP-1), vascular endothelial growth factor (VEGF), and pigment epithelium-derived factor, as well as the production of reactive oxygen species (ROS) were determined. RESULTS: Pre-treatment of human ARPE-19 cells with simvastatin reduced the production of IL-6, IL-8, and MCP-1 cytokines, PGE2 levels, as well as NF-κB activity upon inflammation, whereas amfenac reduced IL-8 and MCP-1 release but increased ROS production. Together, simvastatin and amfenac reduced the release of IL-6, IL-8, and MCP-1 cytokines as well as NF-κB activity but increased the VEGF release upon inflammation in ARPE-19 cells. CONCLUSION: Our present study supports the anti-inflammatory capacity of simvastatin as pre-treatment against inflammation in human RPE cells, and the addition of amfenac complements the effect. The early modulation of local conditions in the retina can prevent inflammation induced PVR formation and subsequent retinal re-detachment.


Assuntos
Fenilacetatos , Descolamento Retiniano , Vitreorretinopatia Proliferativa , Humanos , Vitreorretinopatia Proliferativa/metabolismo , Descolamento Retiniano/cirurgia , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Epitélio Pigmentado da Retina , Sinvastatina/metabolismo , Sinvastatina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios , Inflamação/metabolismo
4.
Cells ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474420

RESUMO

NAD+ boosting via nicotinamide riboside (NR) confers anti-inflammatory effects. However, its underlying mechanisms and therapeutic potential remain incompletely defined. Here, we showed that NR increased the expression of CC-chemokine receptor 7 (CCR7) in human M1 macrophages by flow cytometric analysis of cell surface receptors. Consequently, chemokine ligand 19 (CCL19, ligand for CCR7)-induced macrophage migration was enhanced following NR administration. Metabolomics analysis revealed that prostaglandin E2 (PGE2) was increased by NR in human monocytes and in human serum following in vivo NR supplementation. Furthermore, NR-mediated upregulation of macrophage migration through CCL19/CCR7 was dependent on PGE2 synthesis. We also demonstrated that NR upregulated PGE2 synthesis through SIRT3-dependent post-transcriptional regulation of cyclooxygenase 2 (COX-2). The NR/SIRT3/migration axis was further validated using the scratch-test model where NR and SIRT3 promoted more robust migration across a uniformly disrupted macrophage monolayer. Thus, NR-mediated metabolic regulation of macrophage migration and wound healing may have therapeutic potential for the topical management of chronic wound healing.


Assuntos
Dinoprostona , Niacinamida/análogos & derivados , Compostos de Piridínio , Sirtuína 3 , Humanos , Dinoprostona/metabolismo , Ligantes , Receptores CCR7/metabolismo , Macrófagos/metabolismo
5.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(3): 315-323, 2024 Mar 15.
Artigo em Chinês | MEDLINE | ID: mdl-38500425

RESUMO

Objective: To explore the molecular mechanism of miR-515-5p in inhibiting chondrocyte apoptosis and alleviating inflammatory response in osteoarthritis (OA). Methods: Human cartilage cell line C28/I2 was cultured in vitro and treated with 10 ng/mL interleukin 1ß (IL-1ß) for 24 hours to construct an in vitro OA model. C28/I2 cells were transfected with miR mimics, mimics negative control (NC), over expression (oe)-NC, and oe-Toll-like receptor 4 (TLR4), respectively, and then treated with 10 ng/mL IL-1ß for 24 hours to establish OA model. Cell proliferation capacity was detected by cell counting kit 8 and 5-Ethynyl-2'-deoxyuridine, cell apoptosis and cell cycle were detected by flow cytometry, and B-cell lymphoma 2 protion (Bcl-2), Bcl-2-associated X protein (Bax), cleaved-Caspase-3, TLR4, myeloid differentiation primary response gene 88 (MyD88), p65 and phosphorylated p65 (p-p65) protein expression levels were detected by Western blot. Real-time fluorescence quantitative PCR was used to detect mRNA expression levels of miR-515-5p and TLR4, and ELISA was used to detect pro-inflammatory factor prostaglandin E2 (PGE2), tumor necrosis factor α (TNF -α), and IL-6 levels in cell supernatant. The potential binding sites between miR-515-5p and TLR4 were predicted by BiBiServ2 database, and the targeting relationship between miR-515-5p and TLR4 was verified by dual luciferase reporting assay. Results: After the treatment of C28/I2 cells with IL-1ß, the expressions of miR-515-5p and Bcl-2 protein and the proliferation ability of C28/I2 cells significantly reduced. The expression levels of Bax and cleaved-Caspase-3 protein, the levels of pro-inflammatory factors (PGE2, TNF-α, IL-6) in the supernatant of C28/I2 cells, and the apoptosis of C28/I2 cells significantly increased. In addition, the proportion of the cells at S phase and G 2 phase decreased significantly, and the proportion of cells at G 1 phase increased significantly, suggesting that the cell cycle was blocked after IL-1ß treatment. After transfection with miR mimics, the expression level of miR-515-5p in the cells significantly up-regulated, partially reversing the apoptosis of OA chondrocytes induced by IL-1ß, and alleviating the cycle arrest and inflammatory response of OA chondrocytes. After treating C28/I2 cells with IL-1ß, the mRNA and protein levels of TLR4 significantly increased. Overexpression of miR-515-5p targeted inhibition of TLR4 expression and blocked activation of MyD88/nuclear factor κB (NF-κB) pathway. Overexpression of TLR4 could partially reverse the effect of miR mimics on IL-1ß-induced apoptosis and inflammation of OA chondrocytes. Conclusion: miR-515-5p negatively regulates the expression of TLR4, inhibits the activation of MyD88/NF-κB pathway and apoptosis of OA chondrocytes, and effectively alleviates the inflammatory response of the cells.


Assuntos
MicroRNAs , Osteoartrite , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteína X Associada a bcl-2/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Condrócitos/metabolismo , Dinoprostona/metabolismo , Interleucina-1beta/farmacologia , Interleucina-1beta/metabolismo , Interleucina-6/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , RNA Mensageiro , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Circ Heart Fail ; 17(4): e011089, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525608

RESUMO

BACKGROUND: Prostaglandin E2 acts through 4 G-protein-coupled receptors (EP1-EP4). We previously reported that activation of the EP3 receptor reduces cardiac contractility, and its expression increases after a myocardial infarction (MI), mediating the reduction in cardiac function. In contrast, cardiac overexpression of the EP4 receptor in MI substantially improves cardiac function. Moreover, we recently reported that mice overexpressing EP3 have heart failure under basal conditions and worsened cardiac function after MI. Thus, the deleterious effects of the prostaglandin E2 EP receptors in the heart are mediated via its EP3 receptor. We, therefore, hypothesized that cardiomyocyte-specific knockout (CM-EP3 KO) or antagonism of the EP3 receptor protects the heart after MI. METHODS: To test our hypothesis, we made the novel CM-EP3 KO mouse and subjected CM-EP3 KO or controls to sham or MI surgery for 2 weeks. In separate experiments, C57BL/6 mice were subjected to 2 weeks of MI and treated with either the EP3 antagonist L798 106 or vehicle starting 3 days post-MI. RESULTS: CM-EP3 KO significantly prevented a decline in cardiac function after MI compared with WT animals and prevented an increase in hypertrophy and fibrosis. Excitingly, mice treated with L798 106 3 days after MI had significantly better cardiac function compared with vehicle-treated mice. CONCLUSIONS: Altogether, these data suggest that EP3 may play a direct role in regulating cardiac function, and pharmaceutical targeting of the EP3 receptor may be a therapeutic option in the treatment of heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Camundongos , Animais , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Deleção de Genes , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/prevenção & controle , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP3/genética , Receptores de Prostaglandina E Subtipo EP3/metabolismo
7.
Respir Physiol Neurobiol ; 324: 104251, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492830

RESUMO

PURPOSE: Extracellular acidification is a major component of tissue inflammation, including airway inflammation in asthmatics. However, its physiological/pathophysiological significance in bronchial function is not fully understood. Currently, the functional role of extracellular acidification on bronchial contraction was explored. METHODS: Left main bronchi were isolated from male BALB/c mice. Epithelium-removed tissues were exposed to acidic pH under submaximal contraction induced by 10-5 M acetylcholine in the presence or absence of a COX inhibitor indomethacin (10-6 M). Effects of AH6809 (10-6 M, an EP2 receptor antagonist), BW A868C (10-7 M, a DP receptor antagonist) and CAY10441 (3×10-6 M, an IP receptor antagonist) on the acidification-induced change in tension were determined. The release of prostaglandin E2 (PGE2) from epithelium-denuded tissues in response to acidic pH was assessed using an ELISA. RESULTS: In the bronchi stimulated with acetylcholine, change in the extracellular pH from 7.4 to 6.8 caused a transient augmentation of contraction followed by a sustained relaxing response. The latter inhibitory response was abolished by indomethacin and AH6809 but not by BW A868C or CAY10441. Both indomethacin and AH6809 significantly increased potency and efficacy of acetylcholine at pH 6.8. Stimulation with low pH caused an increase in PGE2 release from epithelium-denuded bronchi. Interestingly, the acidic pH-induced bronchial relaxation was significantly reduced in a murine asthma model that had a bronchial hyperresponsiveness to acetylcholine. CONCLUSION: Taken together, extracellular acidification could inhibit the bronchial contraction via autocrine activation of EP2 receptors. The diminished acidic pH-mediated inhibition of bronchial tone may contribute to excessive bronchoconstriction in inflamed airways such as asthma.


Assuntos
Acetilcolina , Asma , Compostos de Benzil , Imidazóis , Animais , Masculino , Camundongos , Acetilcolina/farmacologia , Brônquios , Dinoprostona/metabolismo , Concentração de Íons de Hidrogênio , Indometacina/farmacologia , Inflamação , Contração Muscular , Camundongos Endogâmicos BALB C
8.
Mol Biol Rep ; 51(1): 405, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457014

RESUMO

BACKGROUND: Early embryonic mortality is one of the major intriguing factors of reproductive failure that causes considerable challenge to the mammalian cell biologists. Heat stress is the major factor responsible for reduced fertility in farm animals. The present study aimed to investigate the influence of heat stress on prostaglandin production and the expression of key genes, including COX-2, PGES, PGFS, ITGAV and LGALS15, in buffalo endometrial epithelial cells. METHODS AND RESULTS: Buffalo genitalia containing ovaries with corpus luteum (CL) were collected immediately post-slaughter. The stages of the estrous cycle were determined based on macroscopic observations of the ovaries. Uterine lumens of the mid-luteal phase (days 6-10 of the estrous cycle) were washed and treated with trypsin to isolate epithelial cells, which were then cultured at control temperature (38.5 °C for 24 h) or exposed to elevated temperatures [38.5 °C for 6 h, 40.5 °C for 18 h; Heat Stressed (HS)]. The supernatant and endometrial epithelial cells were collected at various time points (0, 3, 6, 12, and 24 h) from both the control and treatment groups. Although heat stress (40.5 °C) significantly (P < 0.05) increased COX-2, PGES, and PGFS transcripts in epithelial cells but it did not affect the in vitro production of PGF2α and PGE2. The expression of ITGAV and LGALS15 mRNAs in endometrial epithelial cells remained unaltered under elevated temperature conditions. CONCLUSION: It can be concluded that elevated temperature did not directly modulate prostaglandin production but, it promoted the expression of COX-2, PGES and PGFS mRNA in buffalo endometrial epithelial cells.


Assuntos
Búfalos , Dinoprostona , Animais , Feminino , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Búfalos/genética , Búfalos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Dinoprostona/metabolismo , Células Epiteliais/metabolismo
9.
Am J Physiol Cell Physiol ; 326(4): C1042-C1053, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372137

RESUMO

Solute carrier organic anion transporter family member 2A1 (SLCO2A1) is a prostaglandin (PG) transporter and serves as the osmosensitive ATP-permeable maxi-anion channel (Maxi-Cl). Since a heterotetrameric complex of annexin A2 (ANXA2) and S100A10 is obligatory for the channel activity, the present study aimed to determine if they regulate SLCO2A1-mediated PG transport. This study examined PGE2 uptake and ATP release in Anxa2 and/or S100a10 knockout (KO) murine breast C127 cells. Deletion of Slco2a1 decreased PGE2-d4 uptake by wild-type (WT) cells in an isotonic medium (290 mosmol/kgH2O). Decreased osmolarity (135 mosmol/kgH2O) stimulated ATP release but did not affect PGE2 uptake kinetics, showing Km (1,280 nM) and Vmax (10.38 pmol/15 s/mg protein) similar to those in isotonic medium (1,227 nM and 10.65 pmol/15 s/mg protein), respectively, in WT cells. Deletion of Anxa2 associated with loss of S100a10 diminished SLCO2A1-mediated ATP release and uncompetitively inhibited PGE2 uptake with lowered Km (376 nM) and Vmax (2.59 pmol/15 s/mg protein). Moreover, the immunoprecipitation assay confirmed the physical interaction of ANXA2 with SLCO2A1 in WT cells. Enforcement of ANXA2 expression to Anxa2 KO cells partially restored PGE2 uptake and increased Km (744.3 nM) and Vmax (9.07 pmol/15 s/mg protein), whereas the uptake clearance (Vmax/Km) did not change much regardless of ANXA2 expression. These results suggest that an ANXA2/S100A10 complex modulates PG transport activity but osmolality has little effect on it; therefore, the bound form of SLCO2A1, which functions as a PG transporter and Maxi-Cl, may exist regardless of changes in the cell volume.NEW & NOTEWORTHY A previous study indicated that the ANXA2/S100A10 complex represents the regulatory component of SLCO2A1-mediated Maxi-Cl channel activity. The present study showed that apparent PGE2 uptake by C127 cells was osmoinsensitive and uncompetitively inhibited by loss of ANXA2 expression, demonstrating that ANXA2 is a regulatory factor of SLCO2A1-mediated PG transport activity.


Assuntos
Anexina A2 , Transportadores de Ânions Orgânicos , Prostaglandinas , Proteínas S100 , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Anexina A2/metabolismo , Transporte Biológico , Dinoprostona/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Prostaglandinas/metabolismo , Proteínas S100/metabolismo
10.
Front Immunol ; 15: 1355769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343540

RESUMO

Tumors educate their environment to prime the occurrence of suppressive cell subsets, which enable tumor evasion and favors tumor progression. Among these, there are the myeloid-derived suppressor cells (MDSCs), their presence being associated with the poor clinical outcome of cancer patients. Tumor-derived prostaglandin E2 (PGE2) is known to mediate MDSC differentiation and the acquisition of pro-tumor features. In myeloid cells, PGE2 signaling is mediated via E-prostanoid receptor type 2 (EP2) and EP4. Although the suppressive role of PGE2 is well established in MDSCs, the role of EP2/4 on human MDSCs or whether EP2/4 modulation can prevent MDSCs suppressive features upon exposure to tumor-derived PGE2 is poorly defined. In this study, using an in vitro model of human monocytic-MDSCs (M-MDSCs) we demonstrate that EP2 and EP4 signaling contribute to the induction of a pro-tumor phenotype and function on M-MDSCs. PGE2 signaling via EP2 and EP4 boosted M-MDSC ability to suppress T and NK cell responses. Combined EP2/4 blockade on M-MDSCs during PGE2 exposure prevented the occurrence of these suppressive features. Additionally, EP2/4 blockade attenuated the suppressive phenotype of M-MDSCs in a 3D coculture with colorectal cancer patient-derived organoids. Together, these results identify the role of tumor-derived PGE2 signaling via EP2 and EP4 in this human M-MDSC model, supporting the therapeutic value of targeting PGE2-EP2/4 axis in M-MDSCs to alleviate immunosuppression and facilitate the development of anti-tumor immunity.


Assuntos
Células Supressoras Mieloides , Humanos , Células Supressoras Mieloides/metabolismo , Dinoprostona/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Monócitos
11.
Chem Biol Drug Des ; 103(2): e14477, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38361150

RESUMO

Dry eye (DE) is a multifactorial ocular surface disease characterised by an imbalance in tear homeostasis. The pathogenesis of DE is complex and related to environmental, immunological (e.g., T helper 17 cells) and other factors. However, the DE disease pathogenesis remains unclear, thereby affecting its clinical treatment. This study aimed to explore the mechanism through which prostaglandin E2 (PGE2) affects DE inflammation by regulating Th17. The DE mouse model was established through subcutaneous injection of scopolamine hydrobromide. The tear secretion test and break-up time (BUT) method were used to detect tear secretion and tear film BUT, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to detect the concentrations of PGE2, interleukin (IL)-17, IL-6 and tumour necrosis factor (TNF-α) in tear fluid and those of PGE2 and IL-17 in the serum. RT-qPCR and western blotting were used to test the mRNA and protein expression levels of IL-17 and retinoid-related orphan receptor-γt (RORγt). PGE2 was highly expressed in the DE mouse model. The mRNA and protein levels of IL-17 and the key Th17 transcription factor RORγt were increased in tissues of the DE mice. Moreover, PGE2 promoted tear secretion, reduced the BUT, increased the IL-17 concentration in tears and increased the Th17 cell proportion in DE, whereas the PGE2 receptor inhibitor AH6809 reversed the effects of PGE2 on tear secretion, BUT, and the Th17 cell proportion in draining lymph node (DLN) cells. Taken together, the study findings indicate that PGE2 could induce DE-related symptoms by promoting Th17 differentiation.


Assuntos
Síndromes do Olho Seco , Células Th17 , Camundongos , Animais , Células Th17/metabolismo , Dinoprostona/metabolismo , Interleucina-17 , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Diferenciação Celular , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/genética , Síndromes do Olho Seco/metabolismo , RNA Mensageiro
12.
Int Immunopharmacol ; 129: 111584, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38364741

RESUMO

The immune escape stage in cancer immunoediting is a pivotal feature, transitioning immune-controlled tumor dormancy to progression, and augmenting invasion and metastasis. Tumors employ diverse mechanisms for immune escape, with generating immunosuppressive cells from skewed hematopoiesis being a crucial mechanism. This led us to suggest that tumor cells with immune escape properties produce factors that induce dysregulations in hematopoiesis. In support of this suggestion, this study found that mice bearing advanced-stage tumors exhibited dysregulated hematopoiesis characterized by the development of splenomegaly, anemia, extramedullary hematopoiesis, production of immunosuppressive mediators, and expanded medullary myelopoiesis. Further ex vivo studies exhibited that conditioned medium derived from EL4lu2 cells could mediate the expansion of myeloid derived suppressor cells (MDSCs) in bone marrow cell cultures. The protein array profiling results revealed the presence of elevated levels of osteopontin (OPN), prostaglandin E2 (PGE2) and interleukin 17 (IL-17) in the culture medium derived from EL4luc2 cells. Accordingly, substantial levels of these factors were also detected in the sera of mice bearing EL4luc2 tumors. Among these factors, only PGE2 alone could increase the number of MDSCs in the BM cell cultures. This effect of PGE2 was significantly potentiated by the presence of OPN but not IL-17. Finally, in vitro treatment of EL4luc2 cells with pioglitazone, a modulator of OPN and cyclooxygenase 2 (COX-2) resulted in a significant reduction in cell proliferation in EL4luc2 cells. Our findings highlight the significant role played by tumor cell-derived OPN and PGE2 in fostering the expansion of medullary MDSCs and in promoting tumor cell proliferation. Furthermore, these intertwined cancer processes could be key targets for pioglitazone intervention.


Assuntos
Células Supressoras Mieloides , Animais , Camundongos , Dinoprostona/metabolismo , Osteopontina/metabolismo , Pioglitazona , Evasão Tumoral
13.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339087

RESUMO

Osteoarthritis (OA) is the most prevalent form of arthritis and a major cause of pain and disability. The pathology of OA involves the whole joint in an inflammatory and degenerative process, especially in articular cartilage. OA may be divided into distinguishable phenotypes including one associated with the metabolic syndrome (MetS) of which dyslipidemia and hyperglycemia have been individually linked to OA. Since their combined role in OA pathogenesis remains to be elucidated, we investigated the chondrocyte response to these metabolic stresses, and determined whether a n-3 polyunsaturated fatty acid (PUFA), i.e., eicosapentaenoic acid (EPA), may preserve chondrocyte functions. Rat chondrocytes were cultured with palmitic acid (PA) and/or EPA in normal or high glucose conditions. The expression of genes encoding proteins found in cartilage matrix (type 2 collagen and aggrecan) or involved in degenerative (metalloproteinases, MMPs) or in inflammatory (cyclooxygenase-2, COX-2 and microsomal prostaglandin E synthase, mPGES) processes was analyzed by qPCR. Prostaglandin E2 (PGE2) release was also evaluated by an enzyme-linked immunosorbent assay. Our data indicated that PA dose-dependently up-regulated the mRNA expression of MMP-3 and -13. PA also induced the expression of COX-2 and mPGES and promoted the synthesis of PGE2. Glucose at high concentrations further increased the chondrocyte response to PA. Interestingly, EPA suppressed the inflammatory effects of PA and glucose, and strongly reduced MMP-13 expression. Among the free fatty acid receptors (FFARs), FFAR4 partly mediated the EPA effects and the activation of FFAR1 markedly reduced the inflammatory effects of PA in high glucose conditions. Our findings demonstrate that dyslipidemia associated with hyperglycemia may contribute to OA pathogenesis and explains why an excess of saturated fatty acids and a low level in n-3 PUFAs may disrupt cartilage homeostasis.


Assuntos
Cartilagem Articular , Dislipidemias , Hiperglicemia , Osteoartrite , Ratos , Animais , Condrócitos/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Ciclo-Oxigenase 2/metabolismo , Palmitatos/metabolismo , Células Cultivadas , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Dinoprostona/metabolismo , Hiperglicemia/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Dislipidemias/metabolismo
14.
ACS Appl Mater Interfaces ; 16(6): 6879-6893, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300288

RESUMO

Inflammation contributes to the immunosuppressive microenvironment and leads to the recurrence of surgically resected tumors. The COX-2/PGE2 axis is considered a key player in shaping the immunosuppression microenvironment. However, targeted modulation of the postoperative tumor microenvironment is challenging. To specifically curb the inflammation and alleviate immunosuppression, here, we developed a PGE2 inhibitor celecoxib (CXB)-loaded bionic nanoparticle (CP@CM) coated with activated murine vascular endothelial cell (C166 cells) membrane to target postoperative melanoma and inhibit its recurrence. CP@CM adhered to inflammatory white blood cells (WBCs) through the adhesion molecules, including ICAM-1, VCAM-1, E-selectin, and P-selection, expressed on the surface of C166 cells. Leveraging the natural tropism of the WBC to the inflammatory postoperative tumor site, CP@CM efficiently targeted postoperative tumors. In melanoma postoperative recurrence models, CXB significantly reduced PGE2 secretion and the recruitment of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) by inhibiting the activity of COX-2. This was followed by an increase in the infiltration of CD8+ T cells and CD4+ T cells in tumor tissues. Additionally, the immune responses were further enhanced by combining a PD-L1 monoclonal antibody. Ultimately, this immunotherapeutic strategy reversed the tumor immunosuppressive microenvironment and inhibited tumor recurrence, demonstrating a promising potential for postoperative immunotherapy for melanoma.


Assuntos
Dinoprostona , Melanoma , Camundongos , Humanos , Animais , Dinoprostona/metabolismo , Melanoma/patologia , Linfócitos T CD8-Positivos , Ciclo-Oxigenase 2/metabolismo , Terapia de Imunossupressão , Imunoterapia , Imunossupressores , Inflamação/tratamento farmacológico , Microambiente Tumoral
15.
BMC Vet Res ; 20(1): 46, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310284

RESUMO

BACKGROUND: Intrauterine devices (IUD) are used in the veterinary practice as the non-pharmacological method of oestrus suppression in mares. When placed in the uterus, IUD create a physical contact with the endometrium that mimics the presence of an equine embryo. However, the mechanism of their action has not been fully elucidated. The objective of the present study was to examine the effect of mechanical stimulation of IUD on mare`s endometrium in both in vitro and in vivo study. For this purpose, we demonstrated the effect of IUD on prostaglandin (PG) F2α and PGE2 secretion, and mRNA transcription of genes involved in PG synthesis pathway in equine endometrial cells in vitro. In the in vivo study, we aimed to compare short-term effect of IUD inserted on day 0 (oestrus) with day 5-6 post-ovulation (the specific time when embryo reaches uterus after fertilization) on PG secretion from equine endometrium. To determine the long-term effect on PG synthase mRNA transcription, a single endometrial biopsy was taken only once within each group of mares at certain time points of the estrous cycle from mares placement with IUD on days 0 or 5-6 post-ovualtion. RESULTS: We showed for the first time that the incubation of the endometrial cells with the presence of IUD altered the pattern of PG synthase mRNA transcription in equine epithelial and stromal endometrial cells. In vivo, in mares placement with IUD on day 0, PGE2 concentrations in blood plasma were upregulated between 1 and 6, and at 10 h after the IUD insertion, compared with the control mares (P < 0.05). Moreover, the decrease of PTGFS mRNA transcription on day 16- 18, associated with an elevation in PTGES mRNA transcription on day 20 -21 of the estrous cycle in endometrial biopsies collected from mares placement with IUD on days 5-6 suggest an antiluteolytic action of IUD during the estrous cycle. CONCLUSION: We conclude that the application of IUD may mimic the equine conceptus presence through the physical contact with the endometrium altering PG synthase transcription, and act as a potent modulator of endometrial PG secretion both in vitro and in vivo.


Assuntos
Dinoprostona , Dispositivos Intrauterinos , Cavalos/genética , Animais , Feminino , Dinoprostona/metabolismo , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandinas F/metabolismo , Endométrio/metabolismo , Dispositivos Intrauterinos/veterinária , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Analyst ; 149(6): 1907-1920, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38372525

RESUMO

Arachidonic acid metabolites are a family of bioactive lipids derived from membrane phospholipids. They are involved in cancer progression, but arachidonic acid metabolite profiles and their related biosynthetic pathways remain uncertain in colorectal cancer (CRC). To compare the arachidonic acid metabolite profiles between CRC patients and healthy controls, quantification was performed using a liquid chromatography-mass spectrometry-based analysis of serum and tissue samples. Metabolomics analysis delineated the distinct oxidized lipids in CRC patients and healthy controls. Prostaglandin (PGE2)-derived metabolites were increased, suggesting that the PGE2 biosynthetic pathway was upregulated in CRC. The qRT-PCR and immunohistochemistry analyses showed that the expression level of PGE2 synthases, the key protein of PGE2 biosynthesis, was upregulated in CRC and positively correlated with the CD68+ macrophage density and CRC development. Our study indicates that the PGE2 biosynthetic pathway is associated with macrophage infiltration and progression of CRC tumors.


Assuntos
Neoplasias Colorretais , Dinoprostona , Humanos , Dinoprostona/metabolismo , Ácido Araquidônico , Metaboloma , Metabolômica , Neoplasias Colorretais/metabolismo
17.
Inflammopharmacology ; 32(2): 1575-1592, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38267609

RESUMO

Aquaporins like AQP1, AQP3, and AQP4 are known to be involved in the pathophysiology of inflammation based on earlier reports. This study aimed to evaluate the involvement of Aquaporins as a potential target of inflammation. The study also investigates the efficacy of methanolic extract of Garcinia (GME) and its potent phytocompound (garcinol) against the Aquaporins involved in inflammation. siRNA silencing of AQP3 was carried out in RAW264.7 cells followed by LPS stimulation (1 µg/ml) and assessment of important markers of inflammation including NO, PGE2, TNF-α, IL-6, IL-1ß, CCL20, iNOS and COX-2. To assess the anti-inflammatory potential of Garcinia extract and garcinol, cells were stimulated with 1 µg/ml LPS in the absence and presence of increasing concentrations of GME and garcinol. During the experimental period, extract concentrations (115 µg/ml and 230 µg/ml for RAW264.7; 118 µg/ml and 236 µg/ml for THP-1) and garcinol concentrations (6 µM and 12 µM for RAW264.7; 3 µM and 6 µM for THP-1) were selected based on the IC50. The anti-inflammatory effects were assessed by measuring the levels of TNF-α, IL-1ß, IL-6, and CCL20 in LPS-stimulated cells. The AQP expression was studied at transcriptional and translational levels using qPCR and Western blot analysis respectively. AQP3 knockdown significantly decreased the NO, PGE2, TNF-α, IL-1ß levels along with iNOS and COX-2 mRNA expression. LPS stimulation led to a significant increase in the mRNA and protein level expression AQP1, AQP3, and AQP4 in RAW264.7 cells; and AQP1 and AQP3 in THP-1 cells indicating their role as markers of inflammation. GME and garcinol effectively suppressed the LPS-induced proinflammatory cytokine production in both cell lines. The results indicate that AQP1, AQP3, and AQP4 could play a crucial role as markers of inflammation. Anti-inflammatory agents like Garcinia could potentially decrease the expression of such AQPs, thus inhibiting the inflammatory process.


Assuntos
Aquaporinas , Terpenos , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Dinoprostona/metabolismo , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos/farmacologia , Interleucina-6/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , RNA Mensageiro/metabolismo
18.
Cytokine ; 175: 156498, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38176086

RESUMO

S. aureus isolated from bacterial bovine endometritis is common in epidemiological reports, but is often ignored as a subclinical pathogenic microorganism. In a previous study, we showed that live S. aureus (LSA) and heat killed S. aureus (HK-SA) induce different inflammatory responses in bovine endometrial tissue, and possibly being associated with the accumulation of prostaglandin E2 (PGE2). Thus, in this study, we varied PGE2 concentrations using inhibitors or agonists in HK-SA-treated bovine endometrial tissues. The results demonstrated that PGE2 has a positive relationship with IL-6, TNF-α, and damage-associated molecular patterns (DAMPs; e.g., HMGB-1 and HABP-1) expression and tissues damage, and is regulated by the EP4-p38 MAPK pathway. We concluded that lipoproteins of S. aureus are associated with PGE2 generation. To further explore the relationship between LSA and PGE2 accumulation, we used the S. aureus strain SA113 lipoprotein knockout (SA113Δlpl) to infect bovine endometrial epithelial cells (BECs). LSA decreased PGE2, cAMP, EP4, IL-6, IL-8, cAMP secretion, and the MAPK and PKA signaling pathways when infected with SA113Δlpl, as compared with SA113-infected groups. Moreover, the adhesion and invasion of BECs were similarly downregulated when lipoproteins in S. aureus were knocked out. The results of this study show that PGE2 is involved in both HK-SA- and LSA-induced inflammatory responses in the bovine endometrium. We suggest that S. aureus infection is associated with bovine endometritis, and although HK-SA and LSA induce different inflammatory responses, the strategy of decreasing PGE2 accumulation is helpful in reducing the inflammation stage caused by S. aureus.


Assuntos
Endometrite , Staphylococcus aureus Resistente à Meticilina , Feminino , Humanos , Animais , Bovinos , Dinoprostona/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Staphylococcus aureus/metabolismo , Interleucina-6 , Lipoproteínas , Receptores de Prostaglandina E Subtipo EP4/metabolismo
19.
Nat Struct Mol Biol ; 31(4): 621-632, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216659

RESUMO

Multidrug resistance protein 4 (MRP4) is a broadly expressed ATP-binding cassette transporter that is unique among the MRP subfamily for transporting prostanoids, a group of signaling molecules derived from unsaturated fatty acids. To better understand the basis of the substrate selectivity of MRP4, we used cryogenic-electron microscopy to determine six structures of nanodisc-reconstituted MRP4 at various stages throughout its transport cycle. Substrate-bound structures of MRP4 in complex with PGE1, PGE2 and the sulfonated-sterol DHEA-S reveal a common binding site that accommodates a diverse set of organic anions and suggest an allosteric mechanism for substrate-induced enhancement of MRP4 ATPase activity. Our structure of a catalytically compromised MRP4 mutant bound to ATP-Mg2+ is outward-occluded, a conformation previously unobserved in the MRP subfamily and consistent with an alternating-access transport mechanism. Our study provides insights into the endogenous function of this versatile efflux transporter and establishes a basis for MRP4-targeted drug design.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos , Prostaglandinas , Prostaglandinas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transporte Biológico , Dinoprostona/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
20.
Theriogenology ; 216: 103-110, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38169182

RESUMO

The first luteal response to pregnancy in farm animals at 12-18 days after ovulation involves maintenance of the corpus luteum (CL) if pregnancy has occurred. In most common farm species, regression of the CL results from production of a luteolysin (PGF2α) by the nongravid uterus, and maintenance of the CL involves the production of an antiluteolysin (PGE2) by the gravid uterus and conceptus. The proximal component of a unilateral pathway from a uterine horn to the adjacent CL for transport of PGF2α and PGE2 is the uterine venous and lymphatic vessels and the distal component is the ovarian artery. The mechanisms for venolymphatic arterial transport of PGF2α and PGE2 from a uterine horn to the adjacent CL ovary and transfer of each prostaglandin through the walls of the uteroovarian vein and ovarian artery occur by similar mechanisms probably as a consequence of similarities in molecular structure between the two prostaglandins. Reported conclusions or interpretations during the first luteal response to pregnancy in sows and ewes are that PGE2 increases in concentration in the uteroovarian vein and ovarian artery and counteracts the negative effect of PGF2α on the CL. In cows, treatment with PGE2 increases circulating progesterone concentrations and prevents spontaneous luteolysis and luteolysis induced by estradiol, an intrauterine device, or PGF2α. The prevailing acceptance that interferon tau is the primary factor for maintaining the CL during early pregnancy in ruminants will likely become tempered by the increasing reports on PGE2.


Assuntos
Animais Domésticos , Dinoprosta , Gravidez , Animais , Feminino , Ovinos , Suínos , Bovinos , Animais Domésticos/metabolismo , Dinoprosta/farmacologia , Dinoprostona/metabolismo , Corpo Lúteo/fisiologia , Luteólise/fisiologia , Progesterona/farmacologia , Prostaglandinas/metabolismo , Ruminantes , Luteína/metabolismo , Luteína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...